Extensions 1→N→G→Q→1 with N=C22xC42 and Q=C2

Direct product G=NxQ with N=C22xC42 and Q=C2
dρLabelID
C23xC42336C2^3xC42336,228

Semidirect products G=N:Q with N=C22xC42 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C22xC42):1C2 = D4xC42φ: C2/C1C2 ⊆ Aut C22xC42168(C2^2xC42):1C2336,205
(C22xC42):2C2 = C2xC21:7D4φ: C2/C1C2 ⊆ Aut C22xC42168(C2^2xC42):2C2336,203
(C22xC42):3C2 = C23xD21φ: C2/C1C2 ⊆ Aut C22xC42168(C2^2xC42):3C2336,227
(C22xC42):4C2 = C6xC7:D4φ: C2/C1C2 ⊆ Aut C22xC42168(C2^2xC42):4C2336,183
(C22xC42):5C2 = D7xC22xC6φ: C2/C1C2 ⊆ Aut C22xC42168(C2^2xC42):5C2336,225
(C22xC42):6C2 = C14xC3:D4φ: C2/C1C2 ⊆ Aut C22xC42168(C2^2xC42):6C2336,193
(C22xC42):7C2 = S3xC22xC14φ: C2/C1C2 ⊆ Aut C22xC42168(C2^2xC42):7C2336,226

Non-split extensions G=N.Q with N=C22xC42 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C22xC42).1C2 = C22:C4xC21φ: C2/C1C2 ⊆ Aut C22xC42168(C2^2xC42).1C2336,107
(C22xC42).2C2 = C42.38D4φ: C2/C1C2 ⊆ Aut C22xC42168(C2^2xC42).2C2336,105
(C22xC42).3C2 = C22xDic21φ: C2/C1C2 ⊆ Aut C22xC42336(C2^2xC42).3C2336,202
(C22xC42).4C2 = C3xC23.D7φ: C2/C1C2 ⊆ Aut C22xC42168(C2^2xC42).4C2336,73
(C22xC42).5C2 = C2xC6xDic7φ: C2/C1C2 ⊆ Aut C22xC42336(C2^2xC42).5C2336,182
(C22xC42).6C2 = C7xC6.D4φ: C2/C1C2 ⊆ Aut C22xC42168(C2^2xC42).6C2336,89
(C22xC42).7C2 = Dic3xC2xC14φ: C2/C1C2 ⊆ Aut C22xC42336(C2^2xC42).7C2336,192

׿
x
:
Z
F
o
wr
Q
<